.

Cambio Climático

Diez formas de luchar contra el cambio climático con IA

1

La inteligencia artificial puede ayudar a reducir las emisiones de hogares, cadenas de suministro y logística, mejorar los hábitos de consumo, el control de la deforestación y las predicciones meteorológicas y de demanda energética, según algunos de los mayores expertos de IA del mundo

  • por Karen Hao | traducido por Ana Milutinovic
  • 26 Junio, 2019

Algunos de los investigadores más importantes de inteligencia artificial (IA) han presentado una hoja de ruta que ilustra cómo el aprendizaje automático podría ayudar a salvar a nuestro planeta y a la humanidad del peligro inminente del cambio climático. El texto destaca el potencial del aprendizaje automático en 13 ámbitos, desde los sistemas eléctricos hasta las granjas y los bosques, y el pronóstico meteorológico. Dentro de cada punto, los autores desglosan las contribuciones que podrían hacer varias subdisciplinas del aprendizaje automático, incluida la visión artificial, el procesamiento del lenguaje natural y el aprendizaje reforzado.

Las recomendaciones también se dividen en tres categorías: "alta influencia", para problemas que se ajustan bien al aprendizaje automático, y cuyas intervenciones podrían tener un impacto especialmente grande; "a largo plazo", para soluciones que no darán beneficios hasta 2040; y "alto riesgo", para búsquedas con resultados menos seguros, ya sea porque la tecnología no está madura o porque no sabemos lo suficiente como para evaluar consecuencias. Muchas de las recomendaciones también resumen los actuales esfuerzos en marcha pero que aún no se han desplegado a gran escala.

El informe ha sido liderado por el experto postdoctoral de la Universidad de Pennsylvania (EE. UU.) David Rolnick. También ha recibido asesoramiento de varias personalidades de alto perfil, como el cofundador de Google Brain y destacado empresario y entrenador de IA, Andrew Ng; el fundador y CEO de DeepMind, Demis Hassabis; la directora general de Microsoft Research, Jennifer Chayes; y el reciente Premio Turing por sus contribuciones a este campo, Yoshua Bengio. Aunque los investigadores ofrecen una lista muy completa de algunas de las principales áreas en las que el aprendizaje automático podría contribuir, también señalan que la tecnología no es una bala de plata. En última instancia, la política será el principal impulsor de una transición climática efectiva a gran escala.

A continuación, le presentamos 10 de las recomendaciones de "alta influencia" del informe. Puede consultar la versión completa aquí.

Créditos: Ms. Tech / Unsplash

1. Mejorar las predicciones sobre la demanda de electricidad

Si nuestra dependencia de la energía renovable va a ser cada vez mayor, las empresas de generación necesitarán mejores formas de predecir cuánta energía hace falta, en tiempo real y a largo plazo. Ya existen algoritmos capaces de pronosticar la demanda energética, pero se podrían mejorar en función del tiempo local y los patrones climáticos o el comportamiento en los hogares. Los esfuerzos para que los algoritmos sean más claros también podrían ayudar a los operadores de servicios públicos a interpretar sus resultados y usarlos a la hora de programar cuándo poner en marcha las fuentes renovables.

2. Descubrir nuevos materiales

Los científicos deben desarrollar materiales que almacenen, capturen y utilicen energía de manera más eficiente, pero el proceso de descubrir nuevos materiales suele ser lento y sin garantías. El aprendizaje automático podría acelerar las cosas al encontrar, diseñanar y evalar nuevas estructuras químicas con las propiedades deseadas. Esto podría, por ejemplo, ayudar a crear combustibles solares, que son capaces de almacenar energía de la luz solar, o identificar absorbentes de dióxido de carbono más eficientes o materiales estructurales cuya fabricación requiere mucho menos carbono. Estos nuevos materiales podrían llegar a reemplazar al acero y al cemento, cuya producción representa casi el 10 % de todas las emisiones globales de gases de efecto invernadero.

3. Optimizar las rutas logísticas

El envío de productos por todo el mundo es un proceso complejo y, a menudo, muy ineficiente. Requiere la interacción de diferentes tamaños de envíos, distintos tipos de transporte y una red cambiante de orígenes y destinos. El aprendizaje automático podría ayudar a encontrar maneras de agrupar tantos envíos como sea posible para minimizar el número total de viajes. Dicho sistema también sería más resistente a las interrupciones del transporte.

4. Facilitar la adopción de vehículos eléctricos

Los vehículos eléctricos son una de las estrategias clave para descarbonizar el transporte. Pero su adopción se enfrentan varios desafíos en los que el aprendizaje automático podría ayudar. Los algoritmos pueden mejorar la administración de energía de la batería para aumentar el kilometraje de cada carga y reducir la "ansiedad por el alcance o de autonomía", por ejemplo. También pueden modelar y predecir el comportamiento de la carga añadida para ayudar a los operadores de redes a cumplir y administrar su carga.

5. Aumentar la eficiencia de los edificios

Los sistemas de control inteligente pueden reducir drásticamente el consumo de energía de un edificio al analizar los pronósticos meteorológicos, la ocupación del edificio y otras condiciones ambientales. Este análisis les permite ajustar las necesidades de calefacción, de aire acondicionado, ventilación e iluminación en un espacio interior. Un edificio inteligente también podría comunicarse directamente con la red para reducir la cantidad de energía que utiliza si hay una escasez de suministro de electricidad con baja emisión de carbono en un momento dado.

6. Mejorar las estimaciones del consumo energético

Muchas regiones del mundo tienen poca o ninguna información sobre su consumo de energía y sus emisiones de gases de efecto invernadero, lo que puede ser un obstáculo importante a la hora de diseñar e implementar estrategias efectivas de mitigación. Gracias a las imágenes de satélite, la visión artificial puede extraer huellas y características de los edificios para alimentar algoritmos de aprendizaje automático que pueden estimar el consumo de energía a nivel de una ciudad. Las mismas técnicas también podrían identificar qué edificios deberían modernizarse para maximizar su eficiencia.

7. Optimizar las cadenas de suministro

De la misma manera que el aprendizaje automático puede optimizar las rutas de envío, también puede minimizar las ineficiencias y las emisiones de carbono en las cadenas de suministro de las industrias de alimentos, moda y bienes de consumo. Mejores predicciones de la oferta y la demanda podrían reducir significativamente los residuos de producción y transporte. Por su parte, las recomendaciones específicas sobre productos con bajas emisiones de carbono podrían fomentar un consumo más respetuoso con el medio ambiente.

8. Permitir la agricultura de precisión a escala

Gran parte de la agricultura moderna está dominada por el monocultivo, que dedica un gran terreno a un único cultivo. Este enfoque facilita a los agricultores el manejo de sus campos con tractores y otras herramientas básicas automatizadas, pero también elimina los nutrientes del suelo y reduce su productividad. Como resultado, muchos agricultores dependen en gran medida de los fertilizantes a base de nitrógeno, que pueden convertirse en óxido nitroso, un gas de efecto invernadero 300 veces más potente que el dióxido de carbono. Los robots inteligentes podrían ayudar a los agricultores a gestionar una mezcla de cultivos de manera más efectiva a escala, mientras que los algoritmos podrían ayudar a los agricultores a predecir qué cultivos plantarán, regenerando la calidad de sus tierras y reduciendo la necesidad de fertilizantes.

9. Controlar la deforestación

La deforestación contribuye a aproximadamente el 10 % de las emisiones globales de gases de efecto invernadero, pero su seguimiento y prevención suelen ser un proceso manual tedioso sobre el propio terreno. Las imágenes satelitales y la visión artificial pueden analizar automáticamente la pérdida de la cubierta arbórea a una escala mucho mayor, y los sensores del suelo, combinados con algoritmos para detectar sonidos de motosierra, pueden ayudar a las autoridades locales a detener la actividad ilegal.

10. Concienciar a los consumidores para que adquieran mejores hábitos

Las técnicas de IA que los anunciantes han empezado a usar para dirigirse a los consumidores también se pueden utilizar para ayudar a que nos comportemos de una manera más respetuosa con el medio ambiente. Los consumidores podrían recibir avisos personalizados para promover su inscripción en programas de ahorro de energía, por ejemplo.

Cambio Climático

  1. La energía nuclear de nueva generación está más cerca de ser una realidad gracias a esta 'start-up'

    Kairos Power avanza en la energía nuclear avanzada. En los últimos meses ha firmado un acuerdo con Google y abierto una planta para producir sal fundida

    Kairos Power avanza en la energía nuclear avanzada. En los últimos meses ha firmado un acuerdo con Google y abierto una planta para producir sal fundida.
  2. Por qué señalar con el dedo a China no solucionará el cambio climático

    China es el país con las mayores emisiones contaminantes a nivel mundial, pero culpar a un solo actor no contribuye a resolver un problema global. Sobre todo, cuando las negociaciones están estancadas, en parte, por el desacuerdo sobre qué región debe contribuir más la lucha contra el cambio climático

    China es el país con las mayores emisiones de contaminantes a nivel mundial, pero culpar a un solo actor no contribuye a resolver un problema global
  3. EE UU está a punto de dar un giro de 180 grados en su política climática

    La elección de Trump significa que los próximos cuatro años serán muy diferentes