.

Tecnología y Sociedad

Tesla usará baterías de alta energía de Panasonic

1

Una nueva alianza empresarial podría ayudar al fabricante de automóviles a incrementar el rango de autonomía de sus vehículos.

  • por Kevin Bullis | traducido por Francisco Reyes (Opinno)
  • 13 Enero, 2010

Tesla Motors, el fabricante de vehículos eléctricos de alto rendimiento, está trabajando con Panasonic, el gigante de las baterías y la electrónica de consumo, para desarrollar su nueva generación de baterías. La alianza tiene como objetivo ayudar a que Tesla reduzca el coste de sus baterías y mejore la autonomía de sus vehículos.

El mes pasado Panasonic anunció dos baterías de alta energía para vehículos eléctricos. Estas nuevas baterías almacenan hasta un 30 por ciento más de energía que las baterías de litio-ion precedentes, y este aumento del almacenaje podría, en teoría, incrementar la autonomía del vehículo en un porcentaje similar, con lo que se solucionaría uno de los principales problemas de los vehículos eléctricos. El Roadster de Tesla en la actualidad tiene un rango de autonomía de 244 millas (393 kilómetros) y tarda tres horas y media en cargarse con un cargador especial.

El otro reto principal de los vehículos eléctricos es el coste de los paquetes de baterías. Tesla no ha anunciado el ahorro potencial en cuanto a costes de las futuras baterías, aunque JB Straubel, el director tecnológico de Tesla Motor, afirma que los costes de las baterías han estado bajando de forma constante alrededor de un 8 por ciento cada año.

Tesla tiene previsto incorporar las células de Panasonic en sus paquetes de baterías, y trabajará con esta misma compañía para desarrollar células ajustadas para su uso en vehículos, afirma Straubel. Para ello, Tesla se basará en datos extraídos de los 1.000 vehículos que ha construido hasta ahora, que han sido conducidos alrededor de más de un millón de millas (1.609.344 kilómetros). En la actualidad Tesla obtiene sus baterías de diversos fabricantes.

Aquellos que conduzcan automóviles de Tesla no notarán de forma inmediata el aumento en el rango de las nuevas células de alta energía, señala Straubel, puesto que el proceso para validar el rendimiento de las nuevas células lleva tiempo. Es más, los incrementos en el rango pueden variar. (Por ejemplo, los controles electrónicos evitan que la batería se descargue completamente y así ayudar a mantener la seguridad y la fiabilidad—las descargas completas pueden dañar algunos materiales de las baterías. La forma en que la batería se controla depende de su química y de otros detalles relativos al diseño de la célula.)

Una de las nuevas células en particular requerirá que se lleven a cabo pruebas exhaustivas, puesto que depende de electrodos basados en silicio. En teoría, los electrodos de silicio pueden almacenar mucha más energía que los electrodos de carbono a los que vienen a reemplazar, aunque sin embargo los electrodos de silicio tienden a hincharse y a romperse. Tendrán que ser puestos a prueba para asegurarse de que estos problemas pueden superarse.

El método que está siguiendo Tesla con Panasonic es distinto al de otros fabricantes de automóviles, tales como Nissan y General Motors, dedicados al desarrollo de vehículos eléctricos e híbridos conectables (que se mueven en gran medida con energía eléctrica). Tesla utiliza pequeñas células cilíndricas del tipo que se usan en los paquetes de baterías de los ordenadores portátiles y otros aparatos electrónicos de consumo, mientras que los otros fabricantes se decantan por células de batería más grandes y planas, desarrolladas específicamente para su uso en automóviles.

Sin embargo las baterías planas desarrolladas específicamente para automóviles puede que finalmente sean mejores para los vehículos eléctricos, puesto que están diseñadas para durar más tiempo, afirma Menahem Anderman, analista de la industria de la baterías para automóviles. También, y puesto que las baterías planas son más grandes, se necesitan muchas menos células, con lo que se reduce el número de cosas que pueden salir mal dentro de los paquetes de baterías. Tesla utiliza miles de células, mientras que los otros fabricantes usan sólo un par de centenares.

También está la cuestión de la seguridad. Las nuevas baterías planas normalmente utilizan químicas que son menos volátiles en comparación con las usadas en los portátiles, lo que dificulta que empiecen a arder o que exploten. De hecho, la química litio-níquel que usa Panasonic en sus células de alta energía puede llegar a ser incluso menos estable que los materiales usados en los portátiles convencionales. Tesla ha trabajado para solucionar este problema mediante la implantación de unas medidas de seguridad especiales dentro de los paquetes de baterías.

Straubel afirma que, por ahora, la experiencia de fabricación con células cilíndricas sobrepasa las ventajas potenciales de las células planas, aunque a medida que Tesla y Panasonic sigan colaborando, puede que finalmente se pasen a las células planas.

La asociación de Panasonic con Tesla es parte de una estrategia mayor por dominar el mercado de las baterías avanzadas para automóviles. Panasonic ya es hoy día uno de los fabricantes líder de baterías para vehículos híbridos, que normalmente utilizan baterías de hidruro de níquel-metal. Junto a Sanyo, una subsidiaria que adquirió a finales del año pasado, proporciona baterías de hidruro de níquel-metal para varios fabricantes importantes, entre los que se incluyen Toyota, Honda y Ford, y tiene un acuerdo para desarrollar baterías con Volkswagen. En noviembre, una alianza entre Toyota y Panasonic hizo que comenzase la fabricación de baterías de litio-ion para la versión híbrida conectable del Toyota Prius.

Tecnología y Sociedad

Los avances tecnológicos están cambiando la economía y proporcionando nuevas oportunidades en muchas industrias.

  1. La nueva baza de China para presionar a EE UU pasa por restringir la exportación de litio

    China es una potencia en energías limpias, especialmente en las cadenas de suministro de baterías. Por ello, las tensiones y restricciones comerciales entre China y EE UU podrían poner en riesgo el avance en tecnologías climáticas y el desarrollo de vehículos eléctricos

  2. La suplantación de identidad amenaza la credibilidad de Bluesky

    Varios usuarios han sido víctimas de suplantación de identidad en Bluesky, una situación que pone de manifiesto un problema relacionado con el auge de cuentas falsas que, si no se aborda, podría dañar la reputación y credibilidad de la plataforma

    La suplantación de identidad amenaza la credibilidad de Bluesky
  3. Arati Prabhakar, directora saliente de Ciencia y Tecnología de EE UU: "Queremos entender si la IA es segura, pero aún no sabemos cómo"

    La directora de la Oficina de Política Científica y Tecnológica (OSTP) de la Casa Blanca, que probablemente dejará su cargo al finalizar la administración Biden, reflexiona sobre aspectos como los riesgos de la IA, las políticas migratorias y la Ley de Chips

    Arati Prabhakar, directora de Ciencia y Tecnología de EE UU