.

Nicolas Ortega

Inteligencia Artificial

TR10: Destreza robótica

1

Los modelos virtuales ayudan a los robots a aprender a hacer tareas físicas complejas por sí mismos a base de prueba y error

  • por Will Knight | traducido por Ana Milutinovic
  • 28 Febrero, 2019

  • ¿Qué? Los robots se están enseñando a sí mismos a desenvolverse en el mundo físico

  • ¿Por qué? Si los robots aprendieran a lidiar con el desorden del mundo real, serían capaces de hacer muchas más cosas útiles

  • ¿Quién? OpenAI, Universidad Carnegie Mellon, Universidad de Michigan, UC Berkeley

  • ¿Cuándo? De tres a cinco años

A pesar de todo lo que se oye sobre las máquinas que destruyen empleo, los robots industriales son torpes y poco versátiles. Una máquina puede agarrar piezas en una línea de ensamblaje con una precisión asombrosa, sin descanso y sin aburrirse nunca. Pero si movemos el objeto media pulgada o lo reemplazamos por otro ligeramente diferente, la máquina lo buscará sin parar o intentará agarrar el aire.

Los robots aún no pueden ser programados para descubrir cómo agarrar un objeto con solo mirarlo, como hacen las personas. Pero ahora sí son capaces de aprender a manipular el objeto por sí mismos a través de un método virtual de prueba y error. Uno de los proyectos con esta misión es Dactyl, un robot que se enseñó a sí mismo a voltear un cubo de juguete con los dedos (ver La IA que pasó cien años de soledad aprendiendo a usar una mano). Dactyl, creado por la organización sin ánimo de lucro OpenAI de San Francisco (EE.UU.), consiste en una mano de robot lista para usar, rodeada por una serie de luces y cámaras. Gracias a lo que se conoce como aprendizaje reforzado, el software de la red neuronal aprende a agarrar y girar un cubo dentro de un entorno simulado antes de que la mano lo pruebe de verdad. El software experimenta, al principio, al azar, fortaleciendo las conexiones dentro de la red a lo largo del tiempo a medida que se acerca a su objetivo.

Si los investigadores logran usar este tipo de aprendizaje de manera fiable, los robots podrían montar aparatos, llenar el lavavajillas e incluso ayudar a la abuela a levantarse de la cama.

En general, no es posible transferir ese tipo de práctica virtual al mundo real, porque simular algo como la fricción o las variadas propiedades de diferentes materiales resulta muy complicado (ver Este robot virtual se autoenseña artes marciales como en 'Matrix'). El equipo de OpenAI lo solucionó añadiendo aleatoriedad al entrenamiento virtual, es decir, dándole al robot una aproximación para el desorden de la realidad. Hacen falta más innovaciones para que los robots dominen la destreza avanzada necesaria en un almacén o fábrica real (ver Este robot gana a la Jenga con nociones de física y sentido del tacto). Pero si los investigadores logran usar este tipo de aprendizaje de manera fiable, los robots podrían montar aparatos, llenar el lavavajillas e incluso ayudar a la abuela a levantarse de la cama.

Inteligencia Artificial

 

La inteligencia artificial y los robots están transformando nuestra forma de trabajar y nuestro estilo de vida.

  1. Minería paralela de datos, la técnica del nuevo traductor de Meta para dominar más de 100 idiomas

    La aplicación presentada por Meta nos acerca a la creación de un dispositivo de traducción universal similar al Pez de Babel de La guía del autoestopista galáctico, de Douglas Adams

    Minería paralela de datos, la técnica del nuevo traductor de Meta para dominar más de 100 idiomas
  2. Convirtiendo los trinos en datos: esta IA estudia la migración de las aves a través del sonido

    Tras décadas de frustración, las herramientas de aprendizaje automático están revelando a los ecologistas un tesoro de datos acústicos

  3. Mundos virtuales generativos y modelos que "razonan": qué nos depara la IA en 2025

    Ya sabemos que los agentes y los pequeños modelos lingüísticos serán las grandes tendencias del futuro. No obstante, destacamos otras cinco tendencias que deberías seguir de cerca este año

    Qué nos depara la IA en 2025